USING VENN DIAGRAMS TO ILLUSTRATE REGIONS

We can use shading to show various sets on a Venn diagram. For example, for two intersecting sets A and B:

EXERCISE 1F.2

On separate Venn diagrams, shade regions for:

- a $A \cap B$ c $A' \cup B$
- $A' \cap B$
- **b** $A \cap B'$ **d** $A \cup B'$
 - f $A' \cap B'$

PRINTABLE **VENN DIAGRAMS** (OVERLAPPING)

On separate Venn diagrams, shade regions for:

- a $A \cup B$
- c $(A \cap B)'$
- $\bullet \quad (A' \cup B')'$

а A

С

e

A'

 $A \cap B$

 $(A \cap B)'$

g $A' \cap B$

- **b** $(A \cup B)'$ d $A' \cup B'$
 - f $(A \cup B')'$

Suppose A and B are two disjoint sets. Shade on separate Venn diagrams: B

- b B'd
 - f $A \cup B$
 - h $A \cup B'$

Click on the icon to practise shading regions representing various subsets. You can practise with both two and three intersecting sets.

VENN DIAGRAMS

Discovery

The algebra of sets

For the set of real numbers \mathbb{R} , we can write laws for the operations + and \times :

For any real numbers a, b, and c:

- commutative a+b=b+a and ab=ba
- identity Identity elements 0 and 1 exist such that a + 0 = 0 + a = a and $a \times 1 = 1 \times a = a$.
- associativity (a+b)+c = a + (b+c) and (ab)c = a(bc)
- distributive a(b+c) = ab + ac

The following are the **laws for the algebra of sets** under the operations \cup and \cap :

For any subsets A, B, and C of the universal set \mathscr{E} :

• commutative	$A \cap B = B \cap A$ and $A \cup B = B \cup A$	
• associativity	$A \cap (B \cap C) = (A \cap B) \cap C$ and	We have all
• distributive	$A \cup (B \cup C) = (A \cup B) \cup C$ $A \cup (B \cap C) = (A \cup B) \cap (A \cup C) \text{ and }$ $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$	Venn diagram the distribu
• identity	$A \cup \emptyset = A$ and $A \cap \mathscr{E} = A$	
• complement	$A\cup A'= {\mathscr C} {\rm and} A\cap A'= {\varnothing}$	1 4
• domination	$A \cup \mathscr{C} = \mathscr{C} \text{and} A \cap \varnothing = \varnothing$	E A
 idempotent 	$A \cap A = A$ and $A \cup A = A$	1025
• DeMorgan's	$(A \cap B)' = A' \cup B'$ and $(A \cup B)' = A' \cap B'$	
• involution	(A')' = A	

