USING VENN DIAGRAMS TO ILLUSTRATE REGIONS

We can use shading to show various sets on a Venn diagram.
For example, for two intersecting sets A and B :

A is shaded

$A \cap B$ is shaded

Example 7

Shade the following regions for two intersecting sets A and B :
a $A \cup B$
b $A^{\prime} \cap B$
c $(A \cap B)^{\prime}$
a

(in A, B, or both)
b

(outside A, intersected with B)
c

(outside $A \cap B$)

EXERCISE 1F. 2

1

2

On separate Venn diagrams, shade regions for:
a $A \cap B$
b $A \cap B^{\prime}$
c $A^{\prime} \cup B$
d $A \cup B^{\prime}$
e $A^{\prime} \cap B$
f $A^{\prime} \cap B^{\prime}$

PRINTABLE VENN DIAGRAMS (OVERLAPPING)

On separate Venn diagrams, shade regions for:
a $A \cup B$
b $(A \cup B)^{\prime}$
c $(A \cap B)^{\prime}$
d $A^{\prime} \cup B^{\prime}$
e $\left(A^{\prime} \cup B^{\prime}\right)^{\prime}$
f $\left(A \cup B^{\prime}\right)^{\prime}$
3

Suppose A and B are two disjoint sets. Shade on separate Venn diagrams:

PRINTABLE
a A
b B
c A^{\prime}
d B^{\prime}
e $A \cap B$
f $A \cup B$
g $A^{\prime} \cap B$
h $A \cup B^{\prime}$
i $(A \cap B)^{\prime}$

4

Suppose $B \subseteq A$, as shown in the given Venn diagram. Shade on separate Venn diagrams:

PRINTABLE
a A
b B
c A^{\prime}
d B^{\prime}
e $A \cap B$
f $A \cup B$
g $A^{\prime} \cap B$
i $(A \cap B)^{\prime}$
h $A \cup B^{\prime}$
VENN DIAGRAMS
(SUBSET)

5

This Venn diagram consists of three intersecting sets. Shade on separate Venn diagrams:

a A	b B^{\prime}
c $B \cap C$	d $A \cup B$
e $A \cap B \cap C$	f $A \cup B \cup C$
g $(A \cap B \cap C)^{\prime}$	h $(B \cap C) \cup A$
$\mathbf{i}(A \cup B) \cap C$	j $(A \cap C) \cup(B \cap C)$
k $(A \cap B) \cup C$	I $(A \cup C) \cap(B \cup C)$

PRINTABLE VENN DIAGRAMS (3 SETS)

Click on the icon to practise shading regions representing various subsets. You can
VENN DIAGRAMS practise with both two and three intersecting sets.

Discovery

The algebra of sets
For the set of real numbers \mathbb{R}, we can write laws for the operations + and \times :
For any real numbers a, b, and c :

- commutative $a+b=b+a$ and $a b=b a$
- identity Identity elements 0 and 1 exist such that

$$
a+0=0+a=a \quad \text { and } \quad a \times 1=1 \times a=a
$$

- associativity $(a+b)+c=a+(b+c)$ and $(a b) c=a(b c)$
- distributive $a(b+c)=a b+a c$

The following are the laws for the algebra of sets under the operations \cup and \cap :
For any subsets A, B, and C of the universal set \mathscr{E} :

- commutative $A \cap B=B \cap A$ and $A \cup B=B \cup A$
- associativity $A \cap(B \cap C)=(A \cap B) \cap C$ and $A \cup(B \cup C)=(A \cup B) \cup C$
- distributive $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$ and $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$
- identity $A \cup \varnothing=A \quad$ and $\quad A \cap \mathscr{E}=A$
- complement $A \cup A^{\prime}=\mathscr{E}$ and $A \cap A^{\prime}=\varnothing$
- domination $A \cup \mathscr{E}=\mathscr{E}$ and $A \cap \varnothing=\varnothing$
- idempotent $A \cap A=A$ and $A \cup A=A$
- DeMorgan's $\quad(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime} \quad$ and $\quad(A \cup B)^{\prime}=A^{\prime} \cap B^{\prime}$
- involution $\left(A^{\prime}\right)^{\prime}=A$

